General Forms (Analytical Solution)

Select a common differential equation and enter the parameters to see its solution, graph, and steps.

\( \displaystyle \frac{dy}{dx} = ky \)

Exponential Type

Enter Parameters

\( y(x) = y_0 \cdot e^{kx} \)

Graph Plot

Enter graph range

Solution Steps

\[ \frac{dy}{dx} = ky \]

Separate the variables:

\[ \frac{1}{y} dy = k dx \]

Integrate both sides:

\[ \int \frac{1}{y} dy = \int k dx \]

\[ \ln |y| = kx + C \]

Exponentiate both sides:

\[ |y| = e^{kx + C} = e^{kx} \cdot e^C = C' e^{kx} \]

Using the initial condition \( y(0) = y_0 \):

\[ y_0 = C' e^0 = C' \]

Therefore, the solution is:

\[ \boxed{ y(x) = y_0 e^{kx} } \]